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Purpose and plan of the talk

Purpose of this talk is to add a new ingredient to the sub-Riem annian
model of V1 by Citti-Petitot-Sarti:

recall the idea of the Citti-Petitot-Sarti sub-Riemannian model of V1

reconstructing level sets via geodesics

reconstruction of complex images: the hypoelliptic di�usi on model

the semi-discrete version of the model: reconstruction of mild
corrupted images

new ideas to reconstruct deeply corrupted images (dynamic
restoration )

a Petitot observation (for the validation of the model)

! connection with the trimester on sub-Riemannian geometry



History of the sub-Riemannian model

Hubel and Wiesel (1959) observed that there are (groups of) neurons
sensitive to positions and directions.

Ho�man ('89): the visual cortex has a structure of contact manifold

Petitot ('99): the visual cortex has a structure of sub-Riemannian
manifold (Heisenberg group)

then re�ned by

Citti, Sarti [2003]: ]( SE(2) + hypoelliptic di�usion)

Agrachev, Charlot, Gauthier, Rossi, U.B. (2010|)

projective tangent bundel P TR 2  
numerics via the non-commutative Fourier transform  
semi-discrete model 

also deeply studied by

group of Yuri Sachkov 2010{

group of Remco Duits 2009{



Two ideas coming from neurophyology of the visual
cortex V1

A. In the visual cortex V1, groups of neurons are sensitive to
both positions and directions. Hence the visual cortex lifts
an image on the P TR 2 = R 2 � P 1 (experimental fact)

B. an image is reconstructed by minimizing the energy
necessary to excite groups of neurons that are not excited
by the image in P TR 2 (postulate)
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A1. The lift in PTR2

the visual cortex stores an image as a set of points and tangent
directions, i.e. it makes a lift to P TR 2 = R 2 � P 1 . The projective
tangent bundle of R 2 (or bundle of directions of the plane).

�= 2

x2

� 2 [0; � ]= �

�

x1

P 1

� �= 2

P TR 2 can be seen as a �ber bundle whose base isR 2 and whose �ber
at the point ( x1 ; x2) is the set of straight lines (i.e. directions
without orientation ) d ( x 1 ;x 2 ) attached to ( x1 ; x2).



A2. The lift of a curve

(x1(t ); x2(t )) curve in R 2 ,
lif t
! (x1(t ); x2(t ); � (t )), curve in R 2 � P 1

� (t ) = arctan
�

_x 2 ( t )
_x 1 ( t )

�
2 [� �= 2; �= 2]= �

Example: (cos(t); sin(t)):
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! every C1 submanifold of R 2 has a lift.
! not all curves in R 2 � P 1 are lift of planar curves



A3. Which curves are lift of planar curves?

A curve in ( x1(t ); x2(t ); � (t )) in R 2 � P 1 is the lift of a planar curve if

� (t ) = arctan
�

_x2(t )
_x1(t )

�
$

8
>><

>>:

9 u(:) and v(:)
_x1(t ) = u(t) cos(� (t ))
_x2(t ) = u(t) sin( � (t ))
_� (t ) =: v(t)

� 2 [� �= 2; �= 2]= � (1)

i.e. writing x = ( x1 ; x2 ; � ) if

_x = uX 1 + vX 2 ; X 1 =

0

@
cos(� )
sin(� )

0

1

A ; X 2 =

0

@
0
0
1

1

A ;

in other words
_x 2 N(x) := Spanf X 1(x); X 2(x)g

even if in each point _x belongs to a 2-D space, there are curves going
everywhere in P TR 2 since:

[X 1 ; X 2 ](x) =2 N(x) and dim( Spanf X 1 ; X 2 ; [X 1 ; X 2 ](x)) = 3

completely non-integrable distribution $ H•ormander condition

+ (Chow theorem)

for each pair of points there exists a trajectory joining the m



Observation

admissible curves are lift of planar curve only if we are in P TR 2 (they
are not if we are in SE(2))

if we want to work in SE(2) we have to require u > 0.

(SE(2) is a double covering of P TR 2)



B1. How V1 reconstruct an interrupted curve
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Consider a smooth curve 
 0 : [a; b] [ [c; d] ! R 2 , interrupted in ] b; c[. We
want to complete 
 0 by a curve 
 : [b; c] ! R 2 that is:


 (b) = 
 0(b), 
 (c) = 
 0(c)

_
 (b) � _
 0(b) 6= 0, _
 (c) � _
 0(c) 6= 0.

we assume
 (b) 6= 
 (c), _
 0(b) 6= 0, _
 0(c) 6= 0



B1. What to minimize?

IDEA: Given an orientation column that is already active, it is easy to
make activation of orientation columns that are:

-) close to it,
-) sensitive to a similar direction

i.e. close in R 2 � P 1 .



The most natural cost for lift of planar curves onPTR2

Riemannian length:
Z c

b

q
_x2

1 + _x2
2 + � 2 _� 2 ds =

Z c

b

p
u2 + � 2v2 ds ! min

on all curves in P TR 2 that are lift of planar curves (non-holonomic
constraint).
Then we get a problem of sub-Riemannian geometry (on P TR 2):

_x = uX 1 + vX 2 ;
Z c

b

p
u2 + � 2v2ds ! min;

x = ( x1 ; x2 ; � ); X 1 =

0

@
cos(� )
sin(� )

0

1

A ; X 2 =

0

@
0
0
1

1

A ;

initial and �nal positions are �xed in P TR 2 .



Remarks on this cost

1) The factor � can be eliminated with the transformation
(x1 ; x2) ! (�x 1 ; �x 2), i.e. by a \dilation of the initial conditions" . As a
consequence, there is only one sub-Riemannian cost onP TR 2 invariant by
rototranslations of the plane, modulus dilations (observe d by Agrachev)

2)
Rc

b

p
u2 + � 2v2ds ! min �

Rc
b

�
u2 + � 2v2 �

" "
connec: among connnec: among
hypercolumns orient:columns

ds ! min

good model for the energy necessary to activate orientation columns which
are not directly activated by the image



3) It is a compromise between length and curvature of the planar curve.
Let 
 = ( x; y ):

Z c

b

q
_x2

1 + _x2
2 + � 2 _� 2 ds =

Z c

b

p
u2 + � 2v2 ds =

Z c

b

p
k _
 k2 + � 2k _
 k2K 2 ds

4) there is existence of minimizers in the natural functional s pace

D := f 
 2 C2([b; c]; R 2) j
q

k _
 (t)k2 + � 2k _
 (t)k2K 2

 (t ) 2 L 1([b; c]; R );


 (b) = x0 ; 
 (c) = x1 ; _
 (b) � v0 ; _
 (c) � v1g: (2)

(� for the optimal control formulation to have u; v 2 L 1)
! minimizers are analytic functions (there are no abnormal mi nimizers)

5) Since it is a sub-Riemannian cost, there is a natural hypoelliptic
di�usion equation that can be used to reconstruct images



Drawbacks of this cost

There are minimizers that projected on the plane have cusps:

which are not observed in psycological experiments. They correspond to
trajectories in R 2 � P 1 that become vertical

There are several alternative models to avoid cusps:

the Mumford model (based on Elastica)
R`

0 (1 + k2) ds (older than the
sub-Riemannian)

the \cuspless" model by Citti and Sarti
R`

0

p
1 + k2 ds

(but for this model there is lack of minimizers, see B., Duits , Sachkov,
Rossi 2014, Duits, B., Sachkov, Rossi 2014)

But the sub-Riemannian model has the advantage of

treat in the same way vertical and horizontal connection

a very natural hypoelliptic di�usion equation (to reconstr uct images,
not only level sets): cusps are not a problem for di�usion.



Computation of optimal trajectories for
curve-reconstruction

step (a) compute candidate optimal trajectories with the Pontryagi n
Maximum Principle (they can be computed explicitly in terms of
elliptic functions)

step (b) evaluate their optimality (very di�cult point)
the local behavior of optimal trajectory is very complicate d
! more complicated than the Heisenberg group
! it is as in \generic case" studied by Agrachev and Gauthier (1 996)

cut

cut-conjugate

conjugate

! Yuri Sachkov and collaborators [2010-2013]



Preliminary results of reconstruction of level sets by
Yuri Sachkov and his group

Original



Preliminary results of reconstruction of level sets by
Yuri Sachkov

corrupted



Preliminary results of reconstruction of level sets by
Yuri Sachkov

reconstructed



Complex images (not just a simple contour):

?
?

?



An idea to reconstruct images

all possible paths are activated as a Brownian motion

For instance:

dx = X 1dW1 + X 2dW2 ; ! @t  (t; x ) = ( X 1
2 + X 2

2) (t; x )

X 1
2 + X 2

2 = (cos( � )@x 1 + sin( � )@x 2 )2 + � 2@2
�

(sub-elliptic Heat equation, under H•ormander condition ) solutions are
smooth)

The di�usion is highly non isotropic

@t  (t; x ) = ( X 1
2 + X 2

2) (t; x )

The idea of using the hypoelliptic heat di�usion dates back t o Citti and
Sarti [2003]



PLAN:

0) smoothing the image with a Gaussian (it is made by the
eyes) to get well de�ned level sets

1) lifting the image to P TR 2 and using it as an initial
condition for the hypoelliptic heat eq.

2) computing the hypoelliptic di�usion

3) projecting down the image

This program has been realized with several variants and di� erent results
by

our group

Citti, Sarti and collaborators

Duits and collaborators



STEP 0) Smoothing the image to get a Morse function

! even if images are not described by Morse functions, it is widely accepted
that the retina approximately smoothes the images by making the
convolution with a Gaussian function

[1] L. Peichl, H. W•assle, J Physiol, Vol. 291, 1979, pp. 117-41.

[2] D. Marr; E. Hildreth, Proceedings of the Royal Society of London, Vol.
207, No. 1167. (Feb. 29, 1980), pp. 187-217.

Theorem (B, Duplex, Gauthier, Rossi 2012)

Let G(� x ; � y ) be the two dimensional Gaussian centered in(0; 0) with
standard deviations � x ; � y > 0, then the smoothed image

f c = I � G(� x ; � y ) 2 L 2(R 2 ; R ) \ C 1 (R 2 ; R );

is generically a Morse function.

Saddle
diffeomorfic to those
of a linear function Maximum or minimum



STEP 1) lifting an image to a distribution in PTR2

Let us lift the Morse function f c in P TR 2 . This is made by associating
with every point ( x1 ; x2) of R 2 the direction � 2 R = � of the level set of f c

at the point ( x1 ; x2).

L (f c ) = f (x1 ; x2 ; � ) 2 R 2
c � P 1 s.t. r f c(x1 ; x2) � (cos(� ); sin(� )) = 0 g;

c

level sets of fAll directions are associated

a

c

f

Theorem (B, Duplaix, Gauthier, Rossi 2012)

When f c is a Morse function, then L (f c) is a 2D manifold. (This is false if
� 2 [0; 2� ]n � )



De�ne the distribution on R � P 1 :

f̂ c(x1 ; x2 ; � ) = f c(x1 ; x2)� (d(( x1; x2 ; � ); L (f ))

a 1P

smoothing

Image

lift of the image

x

x1

(distribution supported in L(f))

2

corrupted part

W

! Step 0 and 1 has been realized by Duits and his group in a very e� cient
way by using \orientation scores"



STEP 2: hypoelliptic evolution

There is no agreement on how to compute numerically the hypoelliptic
di�usion:

�nite di�erence schemes (Citti and Sarti group)

numerical implementation of convolution kernels (Duits gr oup)

numerical integration of the Generalized Fourier Transfor m of the
hypoelliptic di�usion equation on SE(2) that is a double covering of
P TR 2

The solution of the hypoelliptic di�usion equation can then be written
as

Z
solutions of Mathieu type equations ;

@t �( t; � ) = ( � 2 d2

d� 2
+ � 2 cos2(� ))�( t; � ) (3)

[B, Duplaix, Gauthier, Rossi 2012]

! we got interesting results (but still numerical integration was very
delicate)



The Generalized Fourier Transform

The Generalized Fourier Transform is a technique that permi ts to
transform PDEs written with left invariant vector �elds on a Lie groups in
a simpler form,

in the same way in which the standard Fourier transform on R permits to
transform in a simpler form @x (which is a left invariant vector �eld on
(R ; +))

Z
f (x)e� i�x d� on (R ; +)

Z

Ĝ
f (x)� � (x) d� on SE(2)

Ĝ set of all equivalence classes of irreducible unitary representations



The semidiscrete model [2014]

Jean-Paul Gauthier, LSIS,

Dario Prandi, LSIS,

Alexei Remizov, CMAP, Ecole Polytechnique

Roman Chertovskih, Porto



The semidiscrete model

A new ingredient: we assume that the visual cortex is sensitive to few
angles only

! We conjecture that there are topological constraints that p revent the
possibility of detecting a continuum of directions even whe n sending the
distance between pinwheels to zero.

[1] Swindale, Shoham, Grinvald, Bonhoe�er, H•obener, Visu al cortex maps
are optimized for uniform coverage [2000].

[2] T. S. Lee, Image representation using 2D Gabor wavelets [1996].

Instead of working on SE(2) we work on the group SE(2; N ).



SE(2,N)

This group has a very important features: it is a Maximally Al most
Periodic group (MAP)

all its irreducible unitary representations are �nite dime nsional

it is very close to be a compact group

! we are not doing this only for better integrate numerically t he
hypoelliptic di�usion equation but we are considering this as a more precise
model.

! the continuous di�usion equation is obtained as N ! 1 .



The semidiscrete hypoelliptic di�usion equation (that has a very simple
proababilistic interpretation) is then

d r

dt
(t; x ) =

�
cos(� r )@x 1 + sin( � r )@x 2

� 2

 r (t; x )+

�
�
 r � 1(t; x ) � 2 r (t; x ) +  r +1 (t; x )

�
; r = 0 ; : : : ; N � 1:

And thanks to the MAP property, using the GFT, its exact solut ion can be
written as

Z
solutions of linear ODEs: (4)



how to get rid of the
R

One can transform the
R

into a
P

in a natural way by considering the
problem de�ned on SE(2; N ) [ (the Bohr compacti�cation of SE(2; N )).

X

A

solutions of linear ODEs: (5)

For any �nite subset of A we have a space of �nite dimension that is
invariant by our Laplacian. We can solve exactly on each of th ese subsets.

If we take the initial condition in one of these subsets I get t he exact
solution.

Arbitrary continuous initial conditions can be uniformly a pproximated on
compact sets by elements of these subspaces.



3) Projecting down

non isotropic diffusion

1

2

x

x

Image

lift of the image

a 1P

choice 1: f r (t; x 1 ; x2) =
R

P 1  (x1 ; x2 ; � ) d�

choice 2: f r (t; x 1 ; x2) = max � 2 P 1 f  (x1 ; x2 ; � )g 



! This algorithm does not use the knowledge of where the image is
corrupted (it is not an inpainting problem)



Dynamic restoration

Can we do more by using the information of where the image is corrupted
to work on images as ? (85% of corrupted pixels)



STEP0 we divide the pixels in \bad (corrupted)" and \good" (non cor rupted)

STEP1 we make a di�usion for �t using the previous method

STEP2 each good point is \averaged" with the original point

STEP3 bad points close to good points that got a su�cient mass are
\upgraded" to good points.

STEP4 repeat from STEP1

! the spirit is not too far from the Citti-Sarti compression/d i�usion











Petitot observation: the visual cortex is probably doing
\pure" hypoelliptic di�usion

! V1 is able to reconstruct an image like:

(pure hypoell. di�usion)
! but not an image like

(hyp. di�. + dyn. restor.)
(pure hypoelliptic di�usion will not give good results on th is immage)



Conclusion

the semi-discrete model permits to do much better reconstructions (in
particular when combined to a smart use of the information go od/bad
points)

SE(2; N ) is very useful not only for image reconstruction, but also f or
image recognition (in the spirit of Mallat talk).



Reconstruction with a wrong lift �= 4



Reconstruction with a wrong lift � �= 4



The END



The Generalized (noncommutative) Fourier Transform

Let f 2 L 1(R ; R ): its Fourier transform is de�ned by the formula

f̂ (� ) =
Z

R
f (x)e� ix� dx:

If f 2 L 1(R ; R ) \ L 2(R ; R ) then f̂ 2 L 2(R ; R ) and one has
Z

R
jf (x)j2dx =

Z

R
j f̂ (� )j2

d�
2�

;

called Parseval or Plancherel equation which expresses thefact that the
Fourier transform is an isometry between L 2(R ; R ) and itself. Moreover the
following inversion formula holds:

f (x) =
Z

R
f̂ (� )eix� d�

2�
;

where the equality is intended in the L 2 sense.



The Generalized Fourier Transform

It is known from more than 50 years that the Fourier transform generalizes
to a wide class of locally compact groups (see for instance Du
o, Dixmier,
Kirillov.....).

(H) G is an unimodular Lie group of Type I

For our purposes it is su�cient to recall that all groups used in practice are
of Type I:

real connected semisimple

real connected nilpotent

not all solvable are of type I, but this is the case for SE(2).

H 2 , SU(2), SO(3), SL(2), SE(2), (2 ; 3; 4) and (2; 3; 5) are of type I.



The Generalized Fourier Transform

Let X � be an irreducible unitary representation of G, i.e. X � is a map from
G to the set of unitary operator acting on a complex separable H ilbert
spaceH s.t:
-) it respects the group law
-) there are no nontrivial invariant subspaces
-) continuous (weak or strong)
! X �

1 � X �
2 if 9 A such that AX �

1 A � 1 = X �
2 .

Ĝ dual of the group G: the set of all equivalence classes of unitary
irreducible representations of G.
! In general the Hilbert space depends on� ! H �

De�nition

Let G be a group satisfying (H0), and f : G ! C be a L 1(G; C) with
respect to the Haar measure. The generalized Fourier transform of f is the
map that to each element of Ĝ associate the linear operator on H � :

f̂ (� ) =
Z

G
f (g)X � (g� 1)dg (6)

since f 2 L 1 and and X � unitary, then f (� ) is a bounded operator.



The dual of the group and the inverse Fourier transform

In general Ĝ is not a group, and its structure can be quite complicated:

In the case in which G is Abelian is a group (Pontryagin duality)
In the case in which G is compact is a Tannaka category and eachH �

is �nite dimensional.

However under the Hypothesis (H 0) on Ĝ one can de�ne a positive measure
dP(� ) (called the Plancherel measure) such that for every
f 2 L 1(G; C) \ L 2(G; C) one has

Z

G
jf (g)j2 =

Z

Ĝ
T r (f̂ � f̂ �

� )dP(� )

This formula express the fact that the generalized Fourier t ransform is an
isometry between L 2(G; C) with respect to the Haar measure and the set of
Hilbert Schmitd operators with respect to the Plancherel me asure.
Moreover the following inversion formula holds:

Theorem

Let G be a group satisfying (H0), and f 2 L 1(G; C) \ L 2(G; C) with respect
to the Haar measure. We have, for eachg 2 G

f (g) =
Z

Ĝ
T r (f̂ � X � (g))dP(� ) (7)


