Models in computer vision often require to estimate continuous transformations of the 3D space, i.e. elements of a Lie group. This demands a consistent framework for statistics on Lie groups. It is known that there is no fully consistent (bi-invariant) Riemannian metric on most Lie groups [1]. We investigate here the existence of bi-invariant pseudo-Riemannian metrics and we present an algorithm to compute such a pseudo-metric on a Lie group if it exists. Unfortunately results show that most Lie groups do not possess a bi-invariant pseudo-metric in general, although the class of such groups is larger than for the Riemannian case.

Consistent statistical framework on Lie groups: Example of the mean

Question 1: which Lie groups do we add by asking for a bi-invariant pseudo-metric instead of a bi-invariant metric?
Question 2: is the pseudo-Riemannian setting rich enough to provide a consistent framework for statistics on Lie groups?

Algorithm to compute bi-invariant pseudo-metrics on Lie groups

Theorem [2]: Structure of a Lie algebra that admits a bi-invariant pseudo-metric

\(g \) has a bi-invariant pseudo-metric iff its adjoint representation decomposition \(g = B^0 \oplus B^3 \) where:
- \(B^0 = \{ b \in g | ad(b) = \lambda b \} \) is a vector space
- \(\forall \lambda, [g, B^3] \subset B^3 \), i.e. \(B^3 \) an ideal

Structure of Lie groups with a bi-invariant pseudo-metric

Algorithms to compute bi-invariant pseudo-metric on \(g \) in case of existence [4]

1. \(B_i^3 = \text{1-dim} \) ?
2. \(B_i^3 \text{ simple?} \)
3. \(B_i^8 = S \oplus S^* \) ?
4. \(B_i^8 = \mathbb{W} \oplus S \oplus S^* \) ?

Else: EXIT, thus no bi-invariant \(<,\>.

Algorithm to compute bi-invariant pseudo-metric on \(g \) in case of existence [4]

1. \(B_i^3 = \text{1-dim}? \)
2. \(B_i^3 \text{ simple?} \)
3. \(B_i^8 = S \oplus S^*? \)
4. \(B_i^8 = \mathbb{W} \oplus S \oplus S^*? \)

And recombination on \(g \):

\[b_1 \oplus \ldots \oplus b_N, b_1^* \oplus \ldots \oplus b_N^* \]

Comparison

Structure of Lie groups with a bi-invariant pseudo-metric

Results

1. \(B_i^3 = \text{1-dim}? \)
2. \(B_i^3 \text{ simple?} \)
3. \(B_i^8 = S \oplus S^*? \)
4. \(B_i^8 = \mathbb{W} \oplus S \oplus S^*? \)

EXIT: No

References:

Answer 2: The class of Lie groups with bi-invariant pseudo-metric is not large enough to try to using the pseudo-Riemannian setting [4].